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I. Introduction

Effective Hamiltonian theory is actually quite an old subject, dating back to a
1929 paper of Van Vleck,1 and a subsequent refinement by Kemble.2 Their approach,
the so-called canonical transformation or unitary transformation method, is widely
known throughout all branches of quantum physics, from high-energy theory to quantum
chemistry. The alternative is to use degenerate perturbation theory. This is avail-

3 Bloch,a and des Cloizeaux.5

able in several different forms, most notably those of Kato,
The past 15 years have seen an intensive development of “he subject by nuclear physi-
cisLs,6“8 based on one of these forns of degenerate perturbation theory.

At first sight, the various degenerate perturbation formalisms all seem more com-
plicated than the unitary approach, their interrelations seem rather obscure, and
moreover they seem totally unrelated to the unitary method. It is now recognized,
however, that most of the perturbative formalisms which lead te Hermitean effecti..:
Hamiltonians are, in fact, completely equivalent, and are connected by simple ident:

ties.g-]l

We will focus here on a point which is far less obvious: the fact that,
subject to an important caveat, these Hermitean perturbation formalisms are actually
identical, term=by-term, to the unitary transformation approvach, when the latter's ef-
fective Hamiltonian Is expanded as a perturbation series. The study of this connec-
tion also has the important benefljt of revealing the relative merits of these ap-
proaches tor practical applivations. The conclusion is that the approach familiar to
nuclear physicists is by far the most powerful and efficient ope, especially for many-
body applications.

Another imprtant recent development concerns the coupled-cluster formalism for
many-body systems. This form of many-body theory was originally developed by Coester

and Kiimme]l 12

for closed-ghell systems. Over the years, both CoeﬁtvrlJ and Kimme! and
coworkernl“ have worked on extensions to rpen-shell systems, aml Zabolitzky and Hyln
hav? done some highly sophisticated nuclear calculations using this approach. Quite
recently, Lowever, Lindgrvnl6 has developed a beautifully clean formulation ol the
coupled-cluster method for open=shell systems. Although not essentially different
from the previous work, it har the important podagogical advantages of being clear,
concise, and quite general. We shall outline the main features of Lindgren's formula-

*Work supported by US Department of Energy



tion. This alternative to perturbation theory may well be advantageous for certain
systems, &6 it suggests different classes of approximations;17 it certainly deserves
much further development.

Although the many-body linked-cluster form of degenerate perturbation theory
wac first developed for nuclear physics appl:‘.cal;i.ons,G_8 it is clear that this is, in
fact, a very general technique for deriving effective Hamiltonians for the lecv-energy
excitations of any many-fermion system. (This formalism has also been extended to
handle the elementary excitations of the boson system of liquid AHe.la) I shall
briefly describe three recent applications where this formalism has contributed sig-
nificantly to the understanding of other many-body systems. These applications are
(a) the derivation of effective spin Hamiltouians in magnetic insulator systems; (b)
derivation and ab initio calculation of effective nm-electron Hamiltonians fur planar
conjugated hydrocarbon molecules, and (c) understanding the so-called valence fluctu-
ation phenomenon exhibited by certa.n rare-earth compounds.

The present formal matters are reviewed in considerably more detail in Ref. 11,
together with application (b). Application (a) is covered in depth in Ref. 19, where-

as application (c) is quite new, and is yet only partially published.20

II. Degenerate Perturbation Theory

We shall rfirst outline what we regard as the most simple and efficient formula-
tion of degenerate perturbatinn theory. We present only the key equations, and refrr
the reader to Ref. 11 fur further details.

The simplest version of degencrate perturbation theory is the Brillouin=Wigner

form, where the effective interaction matrix is PVP, and yis determined {ror

F=wv+3Y =vzdv"r - . (2.1)

n=0

Here P and Q are the usual projection operators onto the "model" and "virtual" sub-
spaces (P + Q=1), i = llo +V, and e = E-Ho. The effective Hamiltonian of this for-
mulation s P(Hu +JV)P. Its eigenvalueg F are identical to certain eigenvalues of
Lhe complete Hamiltonian H, and ils eigenvectors represent the "model projeclions” PY
of the corresponding complet~ eigenvectors ¥. For later use we have also introduced
the wave operator Q, which has the property that ¥ = Q(PY).

From a practical standpoint, this formulation has three serious drawbacks. Most
vbvious is that ydepvndu on the (initially unknown) ejgenvalue E, and furthermore
this opcrator must be re-determinea for each of the desired cigenstates with different
cigenvalues E. Sccond, for many-body systems the Brillovin=-Wigner expansion (2.1)
lacks the dmportant linked=(luster property.  (Even for relatively few-body systoems
Lhis property remains vital; see Ref, 11.) Finally, the above effective Hamiltonian
has a non=Hermitean ampect, rince its eigenvectors are not mutually orthogonal. (They

are mevely the projections PY of the rumplete migenvectors ¥.) This is undesireable



because the various phenomenological effective Hamiltonians which one would like to
explain are invariably Hermitian.

The first two of these deficiencies can be removed by expanding the energy depen-
dence cf:>’in a Taylor series. This eventually leads to the implicit equation

® r r r
W’=§,Zf"f’l- Z:-(;'I—)P"—Z| P . (2.2)
E
(o]

dE*

Thisyreplaces Py P as the effe-tive interaction matrix. The Rayleigh-Schroedinger
(RS) expansion for}*ﬂ i.e. the ordinary power series in V, can now be obtiained by
first solving (2.2) recursively, in terms of matrix products of the various yr's,

then replacing the latter hy their perturbation series, thus:

2 4
¥W=y+VY -Y1+¥Y -YP2+Y-Yu-y1+ G Q@
AV e AR A A A S AR Y 4
=vev+ v L vp v v v pid-Lover v s G0 (2.3)
o o o € %o
Here e, = Eo - H, and Eo comes from PHOP. assuming Ho exactl]y degenerate within P.
(This restriction is only for simplicity; it can easily be removed.) Finally.lf/may

be replaced by a "Hermitized" effective interaction matrix,

X =sag+oa+o+hcl=ap+ W+ ., o

Q ? has a well-defined RS expansion which follows from the precceding

where 6 = QT

equations. This ){ operator has the same eigenvalues asaf/. but its eigenvectors are
now precisely orthogonal.
The RS expansion for this )( operator can be generated by several alternative

mcthods,a’s'l]

but the present procedure has signirvicant practical advantages. The
expansion (2.1) is ohviously a geometric series, and (2.2) also has a geometric-like
character [since onc is expanding the denominators (Eo + AE-HO)-II. One finds, there~
fore, that (2.1):(2.3) present many opportunities for infinite partial summation of
the series, a technique of great ijuportance for practical applications. (See for rxam=
ple Ref. B.) Tae last step (2.4), on the other hand, is by far the most cumplicated
one, from the scandpoint of itr effect on the structure ef the perturbatinn series.
But in all applications to date Lhat we arec i1ware of, the lack of Hermiticity inW
has turned nut lo be quantitatively quite mivor. [IL should vsually, therefore, be
quite adequate to use just the "zeroth order" npproutmnlion.x;‘: 5(»” ”IT). This is
a major mimplification. The alternative methodn for gencrating the RS expansion for
)C have this complicated "Hermitization aspect" inextricably mixed with the other as-
peets, which therefore severely restricts the posgibilities tor efficient partial sum-

mation.

HT. The tnitary Tranaformation Mcthad

Vau Vleckl introduced Lhe idea of a unitary trannformation of H,



B o=ulw (3.1)

where U is to be chosen such that

Q¥ P=0 . (3.2)
The desired effective Hamiltonian is then PWP. Unfortunately, (3.2) does not suf-
fice to determine U or PHP uniquely, since arbitrary unitary transformations within
the P subspace are still allowed. It seems most reasonabie to add a requirement that
U should have as little effect as possible within the P subspace (ani likewise for the
Q subspace). Kemble2 suggested that U should be expressed in a matrix-exponential form,

u=e®, ¢ =-c |, (3.3)
whereby this somewhat vague "minimal effect" requirement can be incorporated via the
simple subsidiary conditions

PGP = 0, GGQ = 0. (3.4)
One may then express G as a formal expansion in powers of V, and collect the resulting
terms in)+ for each order in V. The condition (3.2) can then be imposed separately
for the terms of each order in V [subject also to ¢ = - and (3.4)] toc determine Lhe
successive terms in the G expansion.

The net result of this procedure is to generate a Rayleigh-Schroedinger expan-
sion for the effective Hamiltorian P}*P. In common with the preceeding P(H0 +}C)P
this should genera.e some subset of Lhe exact eigenvalues E, but it is not at all obh-
vious whether these two effective Hamiltonians should have the same sets of mod.)
eigrnvectors. These effective Hamiltonians might well differ by a unitary transforma-

tion within P, in which case their perturbative expansions would also be differeut.

IV. Formal Equivalence of Lhe Perturbative and Unitary Approaches
It turns out that the effective Hamiltonians of Sectjons Il and I1] are not mervely
unitarily equivaient; they are actually identical. That is, their respective Rayleigh-
Schroedinger expansions are identical. This welcome result was first recognized by
Klein,q and was later proven in a quite different manneiy by Jﬁrgvnsvn.al (Klein's
proof unfortunately contains some errors; a corrected proof consists ol two parls,
given in appendices in Refs. 11 and 19.) In retrospect, one can see that both proots
are based on the idea (Section 1I1) that the transformalion trom U to the effertive
Hamiltonian should have "min‘mal efiect within P.'" The proofs also share a common
strategy: a precise definition is given for this "minimal effect,” this requirement
is shown to have a vnique solution, and then cach of the effective Hamiltonians is
shown to satisfy this requirement.

H is hased on the requirement that PUP should he Hermitean.,

(To motivate this choice, conaider the one-dimensional case where U o= 0'0. werre Ner-

Jprgensen's prnuIZl'

miticity requires that U= 2 1. The =] posmability ix then elhimminated by requiring

continuity as V » 0.) It turns out that the subsidiary conditions (3.4) ave sutli-



cient (although not necessary) to make PUP Hermitean.11 It is less obvious how to
apply this requirement to P(Ho +)<9P, since no U is visible here. There are, however,
some simple identities”™™ which show that

P, HOP = (') ™% @Th) (@7, (4.1)

whereby UP = Q(QTQ)-H. and thus PUP = (QTQ)-a, which is now obviously Hermitean.
Klein's proof is based on the following variational problem: Let {a} be the set
of d eigenstates which are described by the d-dimensional model Hamiltonian (d = di-
mension of P), and let {Wu} be the corresponding set of complete eigenvectors (eigen-
vectors of H). Let {Bu] be a set of d vectors which lie entirely within P. These
Ba's are required to be orthonormal, but are otherwise arbitrary; the infinity of
possible choices for {Ba} are therefore related by unitary transformations within P.
The Wa's are also required, here, to have unit norms, but of course they do not lie
entirely within P. The problem is to find the basis set {Bu} such that the quantity
Za<Ba - WU Bu - Wu> attains its absolute (i.e. global) minimum. The solution of this

22,19 and the sets of model eian-

vector variatinnal pronlem is known to bhe unique,
vecrtors of the perturbative and unitary effective Hamiltonians both satisfy this con-
dition (as proven, respectively, in the appendices of Refs. 19 and 11). Finally,

since the eigenvalues and eigenvectors of these model Hamiltonians are identical, the
operators themselves much be identical.

Jégrgensen's proof leads to important insights ahout the relative merits of the
perturbative and unitary approaches. As described in S ction 111, the unitary approach
has a simnlicity and elegance which has appealed to generations of physicists. In
reality, however, this simplicity is only an illusion. Beyon! the lowest orders the
recursive procedure for determining 6 and P}* P becomes exceedingly tedious, and
ofiers no general insights of the type neecsd for infinite partial summations. Two
reasons tor this complexity can now he seen. One is that the unitary approach nust
necessarily include vhe complicated "Hermitisation aspect” of (2.4). The other is

1.

that the perturbation series for UF = Q(Q Q)-a. as Jdelermined by the methods of sec-
tion 11, does not have an exponential=like character, thus it is "unnatural" (i.c.
inefficient) to flocus on the (matrix) logarithm of U, as is done in the Van Viedk-
Kemble approach,

We must not leave this subject without mentioning an imvortant caveat. The origi-
nal works did not fully specify how the unitary approach is to bhe imp lemented in
higher order:. We have presumed a single unitary transformation, whose G contains all
orders in V. There have been a number ot applications, however, which employ a suc-
cession of unitary transformat ions,

, Gl (}2 G'_g

U= U U, Uy - L (4.2

where each transtormation enforces (3.7) tor one higner order in V. The subsidiary

conditions (3.4) are ccomonly imposed 1or each of the G" 8. (/i well=known example of



this procedure is the work of Foldy and Wouthuysen,23 whose nbject was to eliminate
the small components of the Dirac equation.) Explicit calculation shows that this
gives different results from the methods of Sections II and 'I1I; specifically, PU'P -
PUP ~ O'(V ) and P)’P - # (9(»' . Such differauces have sometimes led to con-
fusion, as pointed out by Friar. 24

V. Coupled-Cluster Formalism for Open-Shell Systems

Elementary manipulation of the Schroedinger equation leads to the operator
identity

(@, Hol =vVQ - Qv . (5.1)
(It 1s to be understood that Q = QF, i.e., that Q acts only on the P subspace.) This
is one of the twoc basic ingredients of Lindgren's formulation.17 His other ingredient
refers explicitly to the many-body nature of an open-shell many-fermion system, as
‘ollows.

For closed-shell systems, it is well known6 that the wave oprrator ) can be
expressed as

Q= ew , (5.2)

Z:=1 Wn, N being the tctal number of particles. Fach Wn corresponds to the

where W =
sum of all linked but open perturbation diagrams which lead to tae creation of i
particle-hole pairs (starting from the closed-shell configuration ¢°). The caretL sym-
bol is a reminder that W is a second-quantized operator, with a particle creation or
annihilation operator attached to the end of each outgoing particle or hole line asso-
ciated with an individual Wn compcnent amplitude. Lindgren noted that this represen-

tation is inadequate for open-shell systems, and that it should be replared by
) > .
{e }: 2 :_—?{Wr} , (.3
r=0

where { ] indicates normal-ordering oi the various creation and annihilation opera-

tors. Failure to do this would lcad to many spurious t.erms.11

(This point was also
recognized by Kiimmel and cownrknrs.la but wis not clearly stated.)

It is eaxsy to see that systematic use of (5.1) as a4 recursion formula will gener-
ate the Rayleigh-Schroedinger perturbation expansion tor Q. Tollowing this procedure,
Lindgren was able to prove by induction that the perturbation-theoretic ! does indeed
have the form (5.3), where each term in W is fully connected, and is also "open" in
the sense of always leading to states ir the Q subspace. (It then follows lhnt}f’=
PVD) is fully linked.) In a similar manner, Lindgren then obtained a formal equation
for W itself. This translates into an inhomogeneous Bet of equations for the varioas
cluster amplitudes within W. If one adopts some suitable (physically motivated) trun-
cation of these equations. it becomes poRsible to obtain the "most relevant’ amplitudes
directly, without using perturbation theory. This is the open-shell analog of . he

coupled=-cluster technique.



VI. Recent Non-Nuclear Applicatious

A. Effective Spin Hamiltonians for Magnetic Insulator Materials

Magnetic insulator materials include nearly all halides, most oxides, and a num-
ber of sulphides of the 3d (transition) and 4f (rare earth) metals, as well as some
of the 5f (actinide) metals, plus many other ionic compounds of these metals; thous-
ands of examples are known. Their magnetic behaviors can generally be described by

effective Hamiltonians of the form
H = -£ J§§ + small corrections, (v.1)
3 ij71 7j

where the couplings Jij are typically found to be antiferromagnetic and of fairly

short range. This is the so-called Heisenberg spin Hamiltonian, and efforts to under-
stand its microscopic origin date back to the late 1920's. The so-called superex-
change theory of Anderson25 is the standard in this field, and gives a good gualitative
and semi-quantitative account of the physics. But this theory is restricted to an

isolated pair of magnetic ions in a non-magnetic host crystal [two Ni's in Mg0, two

Cr's in A1203 (= "ruby"), etc.]. All previous attempl: to extend this (or any other)
theory to a crystal with a macroscopic number N of magnetic ions had met with difti-
culties of the unlinked-cluster type: terms involving high powers of N. This is knuwn
historically as the nonorthogonality catastrophe, first observed by Slator26 in 1930,
and it is quite possibly the first unlinked=cluster problem to be recognized since the
development of wave mechanics. It was, therefore, quite gratifying to tind that the
folded-diagram expansion resolves this problem in a clean, general, and complete man-
ner.lq A curious feature of this application is that the appropriate Ho now contains
tvo-bndy as well as one=hody terms. Apart from some minor refinements, however, this
was simply a matter of embedding Anderson's two=site perturbation theory into the tull

many-body formalism.
B. n=Electron Hamiltoniaus

In planar hydrocarbon molecules with double bonds, molecules such as ethvlene,
benzine, anthracene, ¢tc., the two bonds of a double bond are not equal. One s a
strong bonu composed of so-called o orbitals (hybrids of carbon Ix, p, and zpy orba-
tals) which lie in the molecular plane, while the other is a weak bond involving car-
hon 2p, orbitals oriented perpendicular to the plane, the so=called n orbatals.
Pariser, Parr, and l’uplc-27 showed 16 1953 that the lowest few electronic excitel
states ot these molecules can be described fairly accurately by attributing all of the
action to just the nm electrons alone, with their interactions described by a small
number ot phenvmenological parvameters. Moreover, these parameters are guite trans-
ferable == those determined from the optical absorpti-ns of bhenzine provide good pre-
dictions for the corresponding sperctra of napthaline, anthracine, and the other "chick-

enwirve” compounds. This scheme has since been extended to much wider classes of mol. -



cules, and it is now a stlandard textbook subject for organic chemists. Nevertheless,
many theoretical chemists have rejected this as "dirty phenomenology, with no theoret-
ical justification," and they will have nothing to do with this scheme.

There is, of course, another school of theoretical chemists who have been at-
tacking this problem with various formal techniques, and in recent years their efforts
have been evolving towarcs the folded-diagram expansion of Ref. 6. I am convinced that
the latter (or its coupled-cluster counterpart) really is the optimun formalism for
the n-electron problem, and 1 have therefore written some pedagogical reviewszs'11
directed towards these chemists. At the least this provides a sound formal justilica-
tion for the phenomenology, and efforts are also underway by several investigators to

calculate the parameters from "first principles.”

C. Valence Fluctuations in Rare Earth Compounds

"Valence fluctuations' is the name of a many-body phenomenun first recognized
about ten years ago.29 It is seen in a number of rare earth compounds, some "classic”
examples heing SmS, Sme. and TmSe. At low temperalures essentially all electronic
properties become quite anomalous, indica-ing a novel type of many-body ground state.
The subject is complex and still poorly understood. Suffice it Lo say Lhat this 1s
closely related to the Koudo effect, and the most popular model for theoretital study
is 8 dense lattice of Kondo=like ions (actually Anderson-Hamiltonian ions) embedded in
a simple metal. It is also somewhat analogous to the BCS piroblem, to the extent that
a "zeroth order"” description iivolves an enormous degeneracy, whereby strong cooperas
tive etfrcts can result from a weak residual interaction.

Pursuing this BCS analogy, we constructed simple variational wavefunctions for
the ground states of various mode] systems.zo The central problem was to evaluate the
necessary many-body expectation values, so that parameters could be optimized and the
physics axtracted. The graphology for the above spin-Hamiltonian problem turned out
to be well=susted for this task, and the various expectation values were found Lo have
simple analytic forms. The resulting physical output (s consistent with much of the
ohserved phenomencology.

These examples suggest that the ctfective Hamiltonian formalism has much poten-

tial for other fruitful applications.
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